Evolving neural models of path integration

We use a genetic algorithm to evolve neural models of path integration, with particular emphasis on reproducing the homing behaviour of Cataglyphis fortis ants. This is done within the context of a complete model system, including an explicit representation of the animal’s movements within its environment. We show that it is possible to produce a neural network without imposing a priori any particular system for the internal representation of the animal’s home vector. The best evolved network obtained is analysed in detail and is found to resemble the bicomponent model of Mittelstaedt. Because of the presence of leaky integration, the model can reproduce the systematic navigation errors found in desert ants. The model also naturally mimics the searching behaviour that ants perform once they have reached their estimate of the nest location. The results support possible roles for leaky integration and cosine-shaped compass response functions in path integration.

Vickerstaff, R. J., and Di Paolo, E. A., (2005). Evolving neural models of path integration. Journal of Experimental Biology, 208, pp. 3349 – 3366.

Advertisements

, ,

  1. Leave a comment

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: